The Effects of *ortho*-Substituents on the Stability of the Phenyl Anion. The Base Cleavage of Aryltrimethylsilanes

By Giancarlo Seconi,* Istituto dei composti del carbonio contenenti eteromi e loro applicazione, C.N.R., Via Tolara di Sotto 89, 40064 Ozzano Emilia (Bologna), Italy

Maurizio Taddei, Istituto di Chimica Organica, University of Florence, Via G. Capponi 9, Florence, Italy

Colin Eaborn * and John G. Stamper, School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 9QJ

The rates of cleavage of some $XC_6H_4SiMe_3$ compounds by KOH in 9:1 v v Me_2SO-H_2O at 40.0 °C have been measured: the values of $k_{rel.}$, the rate relative to that for X = H, are (X=), $o-NO_2$, 420 000; $p-NO_2$, 10 300; $m-NO_2$, 9 700; o-F, 4 000; o-CI, 3 960; m-CI, 375; p-CI, 38; $o-NMe_2$, 14; o-OMe, 6.3; o-Me, 0.60. The values of log $k_{rel.}$ correlate satisfactorily with the calculated energy for the conversion $XC_6H_5 \longrightarrow XC_6H_4^-$, except for X = $o-NMe_2$, for which steric effects may be significant. The previously reported log $k_{rel.}$ values for hydrogen exchange in $XC_6H_4^2H$ in KNH_2-NH_3 also correlate satisfactorily with the deprotonation energies, confirming that rate-determining formation of the anions $XC_6H_4^-$ is involved in this reaction, as in the desilylation.

We recently calculated the deprotonation energies for the o-, m-, and p-positions in a range of substituted benzenes XC_6H_5 .¹ and showed that in the light of the results the effects of m- and p-substituents on the rates of (a) cleavage of XC_6H_4 -SiMe₃ bonds by KOH-H₂O-Me₂SO and (b) hydrogen-exchange in $XC_6H_4^2H$ in KNH₂-NH₃ could be interpreted in terms of rate-determining formation of the aryl anions, $XC_6H_4^-$, in both cases.[†] We had to defer discussion of the effects of ortho-substituents in the absence of data for the cleavage of o- XC_6H_4 SiMe₃ compounds, and we now present such data for a few selected substituents.

RESULTS AND DISCUSSION

Rates of cleavage of XC₆H₄SiMe₃ compounds by KOH in 9:1 v/v Me₂SO-H₂O at 40 °C were measured spectrophotometrically, and the values of the observed firstorder rate constants, k, at the particular base concentration used are shown in the Table.[†] Because of the difficulty of determining the exact base concentration at the lowest concentrations used, and because the observed rate constants could not be assumed to be proportional to the base concentration, we used comparisons of two or more compounds at each base concentration to give relative rates, and the values of $k_{\rm rel}$, the rate for $\rm XC_6H_4$ - $SiMe_3$ relative to that for $C_6H_5SiMe_3$, are shown in the Table. [In fact the values of k appear to be approximately proportional to the (added aqueous) base concentration at least in the range 0.01-0.50m, and values of $k_{\rm rel.}$ derived by assuming this proportionality over the whole concentration would not differ significantly from those listed in the Table.] To provide convenient reference compounds for overlap, and also additional data for comparisons, some XC₆H₄SiMe₃ compounds containing *m*- or p-X groups were also examined. The values of $k_{\rm rel.}$ obtained for X = m-Cl, p-Cl, and p-NO₂ agree reasonably well with those recorded by Cretney and Wright ³ (listed in a footnote to the Table), but there is a noteworthy difference between the two sets of results in the case of X = m-NO₂. The greater activation by mthan by p-NO₂ reported by Cretney and Wright seemed

Rates of cleavage of $XC_6H_4SiMe_3$ compounds by Me_2SO -aqueous KOH (9:1 v/v) at 40.0 °C)

			[KOH]/		
No.	X	λ/nm "	Mb	105k/s-1	k _{rel.} ¢
1	o-NMe ₂	270	0.50	48	14
	-		0.20	20.7	
			0.10	10.5	
2	o-OMe	291	0.50	21.3	6.3
3	o-Me	276	0.50	2.0	0.60
4	Н	270	0.50	3.4	1.0
5	o-Cl	277	0.10	2 970	3 960
			0.010	235	
6	m-Cl	270	0.10	280	375
7	p-Cl	274	0.20	55	38
	-		0.10	30	
8	<i>o</i> -F	271	0.10	2 760	
			0.01	256	4 000
9	$o-NO_2$	270	0.0020	4 170	420 000
10	$m - NO_2$	313	0.010	575	9 700
11	$p - NO_2$	290	0.010	615	10 300
			0.0020	103	

^a Wavelength used to monitor reaction. ^b Concentration of aqueous KOH, 1 vol. of which was mixed with 9 vol. of Me₂SO. ^c In ref. 3, $k_{rel.}$ values were (X =) *m*-Cl, 400; *p*-Cl, 34.5; *m*-NO₂, 12 960; *p*-NO₂, 10 120.

anomalous in the light of the calculations and correlations we previously described,¹ and use of our $k_{rel.}$ value for $X = m-NO_2$ in place of that given by Cretney and Wright leads to improvements in all the correlations. (It should be noted that while the values of $k_{rel.}$ may be subject to substantial error, direct comparison of the rates at the same base concentration shows clearly that the *m*- is less reactive than the *p*-NO₂ compound.)

In considering the correlation between the log $k_{rel.}$ values for the base cleavage of $XC_6H_4SiMe_3$ compounds and the calculated deprotonation energies of XC_6H_5 , we omit data for the fluoro-substituent, which is known to give anomalous results in the type of calculation used. We also leave aside for the moment the data for X = 0

 $[\]uparrow$ A similar approach was successful in accounting for the effects of substituents in the base cleavage of the thiophen derivatives XC_4H_2S -SiMe₃.²

[†] In all cases the aromatic product is the corresponding XC_6H_5 , *i.e.* even with X = o-Cl there is no formation of benzyne, capture of a proton from the solvent by the anion o-ClC₆H₄⁻ evidently being markedly faster than loss of chloride ion.

o-NMe₂. With these omissions, there is, as Figure 1 shows, a correlation between log $k_{\rm rel}$ and $\Delta E_{\rm X}^-$ (the calculated energy change for the conversion $\rm XC_6H_5^ \rightarrow$ $\rm XC_6H_4^-$ relative to that for $\rm C_6H_6^- \rightarrow \rm C_6H_5^-$) which is acceptably linear when the approximate nature of the calculations is taken into account, the correlation coefficient, r, being 0.988 (14 points); the points for the ortho-substituents are, in fact, closer to the line than those for the para-substituents, the most seriously deviant points being those for p-NO₂ and p-Cl, and if these are omitted r is improved to 0.996.

FIGURE 1 Plot of log $k_{rel.}$ for base cleavage of $XC_6H_4SiMe_3$ compounds in 9:1 Me₂SO-H₂O against the relative deprotonation energies ΔE_X^- for XC_6H_5 . The numbering of the points is as in the Table, and as follows: 12, *m*-Me; 13, *p*-Me; 14, *m*-OMe; 15, *p*-OMe; 16, *p*-NMe₂. For points 1 and 16 the ΔE_X^- values are those for *o*- and *p*-NH₂, respectively

Before considering the log $k_{\rm rel.}$ value for $X = o-NMe_2$ it was first necessary to recalculate the energy for the conversion $H_2NC_6H_5 \longrightarrow o-H_2NC_6H_4^-$, since the earlier calculation¹ was based on planar geometry at nitrogen. With optimized geometries the value of the deprotonation energy is $8\,220 \times 10^{-4}$ a.u., compared with the value of 8276×10^{-4} a.u. based on planar geometry. (For completeness we also recalculated the deprotonation energy for $X = m-NH_2$ on the basis of optimized geometry, obtaining a value of $8\,234 \times 10^{-4}$ compared with the previously reported 8.272×10^{-4} a.u.) This gives a value of $-2 imes 10^{-3}$ a.u. for $\Delta E_{\rm X}^{-}$, the deprotonation energy relative to that for benzene. While this value correctly implies that the o-NMe₂ (in contrast to the p-NMe₂) group should activate in the base cleavage of the XC₆H₄SiMe₃ compounds, its use in Figure 1 gives a point lying ca. 1 log $k_{rel.}$ unit above the line, *i.e.* o-Me₂- $NC_{6}H_{4}SiMe_{3}$ is ca. 10 times as reactive as would be expected from the calculated deprotonation energy for the o-position of $H_2NC_6H_5$. It is not surprising that this is the point showing the most serious deviation, since (a) the calculations are for the NH₂ group and the rate data for the NMe2 group, and this distinction is likely to be more significant for the o- than for the m- or p-position, and (b) steric interaction between the NMe₂ and the SiMe₃ group, will tend to reduce the conjugative delocalization of the lone pair of the nitrogen atom, and this can be expected to favour formation of the anion.

If the data for m- and p-F are again omitted, while the value of $\Delta E_{\mathbf{X}}^{-}$ for o-F is assumed, in the light of the similar log $k_{rel.}$ values of X = o-F and o-Cl in the cleavage, to be equal to that for o-Cl, a reasonably satisfactory correlation is also revealed between $\Delta E_{\rm X}$ and log $k_{\rm rel.}$ values (some of them rather rough values) for hydrogen exchange of XC₆H₄²H compounds in KNH₂-NH₃.^{1,4,5} (For a summary of the data see ref. 1.) As Figure 2 shows, only the point for X = o-OMe deviates significantly from the correlation line, and we conclude that the effects of the substituents in both the exchange and the cleavage can be related to the ease of forming the corresponding anions $XC_{6}H_{4}^{-}$. Unfortunately there are insufficient ortho-substituent data for a significant plot of log $k_{\rm rel.}$ for the cleavage against that for the exchange, especially since for one of the substituents, o-F, the $k_{\rm rel}$ for the exchange represents only a minimum value.

FIGURE 2 Plot of log $k_{rel.}$ for dedeuteriation of XC_6H_4 ^aH in KNH_2 -NH₃ against the relative deprotonation energies ΔE_X^{-1} for XC_6H_5 . The numbering of the points is as in Figure 1, and as follows: 17, o-CF₃; 18, m-CF₃; 19, p-CF₃; 20, m-NMe₂. For points 16 and 20, the ΔE_X^{-1} values are those for p- and m-NH₂, respectively

It was observed previously that the values of $k_{\rm rel.}$ for exchange of o-XC₆H₄²H compounds correlated satisfactorily with σ_l constants,⁵ and using more recent values ⁶ of σ_I we confirm that this is the case (r 0.993; slope 12.79; intercept -0.08; 5 points), with only the point for X = OMe deviating significantly from the correlation line. A plot of log $k_{\rm rel}$ for the cleavage of $o-\rm XC_6$ - H_4 SiMe₃ compounds against σ_I (Figure 3) is also a fairly good straight line (r 0.987; slope 7.71, intercept 0.191; 6 points) if the point for X = OMe is omitted. It follows that $\Delta E_{\mathbf{x}}^{-}$ (with omission of data for *o*-F) should show a satisfactory correlation with σ_I for ortho-substituents, and the appropriate plot (Figure 4) is indeed, reasonably linear, with again only the point for OMe deviating substantially (if this point is omitted, r = 0.996 for 6 points).

The approximate correlation of the σ_I constants with

the acidities of the ortho-positions of XC_6H_5 compounds (and thus with the log $k_{rel.}$ values for ortho-substituted derivatives in desilylation and hydrogen exchange) is much more difficult to interpret than might be supposed. In the light of the qualitative empirical electronic theory of substituent effects which has served organic chemists

FIGURE 3 Plot of log $k_{rel.}$ for base cleavage of $o-XC_6H_4SiMe_3$ compounds in 9:1 Me₂SO-H₂O against σ_1 constants for X. The numbering of points is as in the Table

so well, it might seem very likely that in the anions XC_{6} - H_{4}^{-} (the stabilities of which could be expected to represent the major factor in the substituent effects), in which the lone pair of electrons cannot be conjugatively delocalized, the effects of substituents would be dominated by the polar interaction between the substituent and the nearby negative charge, and so related to the σ_{I} constants. (Hall *et al.* considered that in hydrogen

FIGURE 4 Plot of relative deprotonation energies $\Delta E_{\rm X}^{-}$ for ortho-positions of $\rm XC_6H_5$ against σ_I constants for o-X. The numbering of points is as in Figure 2, and as follows: 21, o-NH₂: 22, o-CN

exchange the π -electron system of the benzene would not be significantly involved, so that the inductive and field effects of substituents are of major importance and the resonance effects negligible.⁴) But we cannot discern in the calculated charge distributions in XC₆H₆ and XC₆H₅⁻ any indications of why the effects of ortho-substituents should correlate with σ_I . For example, as we have noted before,¹ there is considerable distortion of the π -system in the anion C₆H₅⁻, so that a π -charge of -0.108e resides on each ortho-carbon atom compared with a σ -charge of -0.048e. While the ratio of σ - to π -charge, 0.44: 1, is

higher than that at the *para*-carbon, viz. 0.12:1, the ratio is much higher at the *meta*-carbon atom, *viz.* 4.2:1, and so it might be expected that the inductive effects of substituents would be most dominant at the metaposition, whereas the effects of m-X groups, in fact, correlate well with σ_o constants. [It should be noted, however, that the calculated total charge at the orthoposition (-0.156e) is higher than that at the *para*-(-0.143e) or meta-position (-0.093), in keeping with the fact that the activation by the strongly electron-withdrawing groups is largest from the ortho-position.] Furthermore, if for simplicity attention is focused on the strongly electron-withdrawing groups, viz. NO2, CN, and CF_{3} , in which inductive and resonance effects act in the same direction, it can be seen that while the ratio of σ - to π -charge taken by X in $XC_6H_4^-$ is greater for othan for p-X, it is substantially larger in all cases for m-X,¹ and thus the inductive effect might again be expected to be more dominant at the m- than the o-position, contrary to observation.

In viewing this failure to relate the correlation with σ_I constants for o-X groups to calculated charge distributions, it should be remembered that these and related substituent constants were derived empirically from free energy relationships, without reference to knowledge of charge distributions, and so it need not be surprising that for the systems under consideration correlations are found with $\Delta E_{\mathbf{x}}^{-}$ or log k_{rel} values and not with charge distributions, since these free energy quantities cannot themselves be interpreted in any simple way in terms of charge distributions, probably because there is a strong interaction between σ - and π -effects.¹ It may be relevant to note, however, that whereas for m- and p-X groups the charge ΔC on the 1-H atom in XC₆H₅ relative to that in C_6H_6 correlates with σ_o , for o-X there is fair correlation with σ_I for X = CN, Cl, CF₃, OMe, and Me (r 0.960; 6 points), though the points for $X = NO_2$ and OMe lie badly off the correlation line.

EXPERIMENTAL

Calculations.—The calculations of the deprotonation energies for $H_2NC_6H_5 \longrightarrow o$ - or m- $H_2NC_6H_4^-$ were carried out as before,¹ but with optimization of the geometries at nitrogen on the anions, which gave HNH and HNC angles (constrained to be equal) of 109.35 and 110.1° for the o- and *m*-substituted anion, respectively. The calculated values of the deprotonation energies, $(E_X^- - E_X)$ were 0.8220 and 0.8234 a.u. for X = o- and *m*-NH₂, respectively. The charge distributions in the anions are shown in Figure 5.

Preparations of Organosilicon Compounds.—The XC_6H_4 -SiMe₃ compounds were made by standard methods, viz. (X =) o-Cl, -F, -NO₂, and NMe₂; ⁷ o-Me; ⁸ p-NO₂; ⁹ m-NO₂; ¹⁰ o-OMe.¹¹ No impurities were revealed by ¹H n.m.r. spectroscopy or g.l.c.

Rate Measurements.—Dimethyl sulphoxide was dried over calcium hydride and distilled from the solid under vacuum. The reaction medium was made up by mixing 1 vol. of aqueous KOH, of the concentration shown in the Table, with 9 vol. of Me_2SO . The mixture was stored at room temperature for two days before use (cf. ref. 3). For

 $0 - H_2 N C_6 H_4^-$

Calculated σ , π , and total charge distributions FIGURE 5 in the anions o- and $m-H_2NC_6H_4^-$

each run, the medium (3 cm³) was placed in a quartz cell in the compartment of a Hitachi-Perkin-Elmer model 323 u.v. spectrometer, which was thermostatted at 40.0 °C. After 15 min 1 μ l of a solution of the organosilane in Me₂SO was added, and the cell was shaken briefly and returned to the

holder. Readings of the absorption at the wavelength specified in the Table were begun. The u.v. spectra of all products were identical with those of the appropriate solutions of the expected XC₆H₅ compounds, and good firstorder rate constants, reproducible to $\pm 2\%$, were obtained.

This work was carried out as part of a C.N.R.-British Council bilateral collaborative project. We thank Dr. D. R. M. Walton for valuable advice.

[1/1648 Received, 23rd October, 1981]

REFERENCES

¹ C. Eaborn, J. G. Stamper, and G. Seconi, J. Organomet. Chem., 1981, 204, 27. ² G. Seconi, C. Eaborn, and J. G. Stamper, J. Organomet.

Chem., 1981, 204, 153.

³ J. Cretney and G. J. Wright, J. Organomet. Chem., 1971, 28, 49.

⁴ G. E. Hall, R. Piccolini, and J. D. Roberts, J. Am. Chem. Soc., 1955, 77, 4540; G. E. Hall, E. M. Libby, and E. L. James,

C. Eaborn, D. R. M. Walton, and D. J. Young, J. Chem. Soc. B, 1969, 15.

⁸ H. Freiser, M. V. Eagle, and J. Speier, J. Am. Chem. Soc., 1953, 75, 2821.

⁹ F. B. Deans and C. Eaborn, J. Chem. Soc., 1957, 498.

C. Eaborn and P. M. Jackson, J. Chem. Soc. B, 1969, 21.
H. Gilman and J. F. Nobis, J. Am. Chem. Soc., 1950, 72,

2629.